Evaluation of SVM Binary Classification with Nonparametric Conditional Stochastic Simulations

نویسندگان

  • Mikhail Kanevski
  • M. Kanevski
چکیده

The quality of Support Vector Machines (SVM) binary classification of spatial environmental data is evaluated with geostatistical nonparametric conditional stochastic simulations a spatial Monte Carlo model based on sequential indicator simulation algorithm. Equally probable realizations are generated and compared with SVM classification. Uncertainty of predictions is described by conditional standard deviations. Case study is based on the classification of porosity data. Only binary problem is considered. Results obtained confirm the efficiency of the SVM binary classification of spatial data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل ممیز غیرپارامتریک بهبودیافته برای دسته‌بندی تصاویر ابرطیفی با نمونه آموزشی محدود

Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...

متن کامل

A new classification method based on pairwise SVM for facial age estimation

This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...

متن کامل

A sequence labeling approach to link medications and their attributes in clinical notes and clinical trial announcements for information extraction

OBJECTIVE The goal of this work was to evaluate machine learning methods, binary classification and sequence labeling, for medication-attribute linkage detection in two clinical corpora. DATA AND METHODS We double annotated 3000 clinical trial announcements (CTA) and 1655 clinical notes (CN) for medication named entities and their attributes. A binary support vector machine (SVM) classificati...

متن کامل

Detection and Classification of Heart Premature Contractions via α-Level Binary Neyman-Pearson Radius Test: A Comparative Study

The aim of this study is to introduce a new methodology for isolation of ectopic rhythms of ambulatory electrocardiogram (ECG) holter data via appropriate statistical analyses imposing reasonable computational burden. First, the events of the ECG signal are detected and delineated using a robust wavelet-based algorithm. Then, using Binary Neyman-Pearson Radius test, an appropriate classifie...

متن کامل

H-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data

Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001